Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.915
Filtrar
1.
J Control Release ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663753

RESUMO

Remodeling retinal Müller glial fate, including gliosis inhibition and pro-reprogramming, represents a crucial avenue for treating degenerative retinal diseases. Stem cell transplantation exerts effects on modulating retinal Müller glial fate. However, the optimized stem cell products and the underlying therapeutic mechanisms need to be investigated. In the present study, we found that retinal progenitor cells from human embryonic stem cell-derived retinal organoids (hERO-RPCs) transferred extracellular vehicles (EVs) into Müller cells following subretinal transplantation into RCS rats. Small EVs from hERO-RPCs (hERO-RPC-sEVs) were collected and were found to delay photoreceptor degeneration and protect retinal function in RCS rats. hERO-RPC-sEVs were taken up by Müller cells both in vivo and in vitro, and inhibited gliosis while promoting early dedifferentiation of Müller cells. We further explored the miRNA profiles of hERO-RPC-sEVs, which suggested a functional signature associated with neuroprotection and development, as well as the regulation of stem cell and glial fate. Mechanistically, hERO-RPC-sEVs might regulate the fate of Müller cells by miRNA-mediated nuclear factor I transcription factors B (NFIB) downregulation. Collectively, our findings offer novel mechanistic insights into stem cell therapy and promote the development of EV-centered therapeutic strategies.

2.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664789

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteócitos , Osteogênese , Tropomiosina , Animais , Vesículas Extracelulares/metabolismo , Camundongos , Osteócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Tropomiosina/metabolismo , Tropomiosina/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Cultivadas , Osteoporose/metabolismo , Adipogenia , Osteoclastos/metabolismo , Masculino , Diferenciação Celular
3.
Front Neurol ; 15: 1377538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654734

RESUMO

Background: This study aimed to investigate the clinical application of 18F-FDG PET radiomics features for temporal lobe epilepsy and to create PET radiomics-based machine learning models for differentiating temporal lobe epilepsy (TLE) patients from healthy controls. Methods: A total of 347 subjects who underwent 18F-FDG PET scans from March 2014 to January 2020 (234 TLE patients: 25.50 ± 8.89 years, 141 male patients and 93 female patients; and 113 controls: 27.59 ± 6.94 years, 48 male individuals and 65 female individuals) were allocated to the training (n = 248) and test (n = 99) sets. All 3D PET images were registered to the Montreal Neurological Institute template. PyRadiomics was used to extract radiomics features from the temporal regions segmented according to the Automated Anatomical Labeling (AAL) atlas. The least absolute shrinkage and selection operator (LASSO) and Boruta algorithms were applied to select the radiomics features significantly associated with TLE. Eleven machine-learning algorithms were used to establish models and to select the best model in the training set. Results: The final radiomics features (n = 7) used for model training were selected through the combinations of the LASSO and the Boruta algorithms with cross-validation. All data were randomly divided into a training set (n = 248) and a testing set (n = 99). Among 11 machine-learning algorithms, the logistic regression (AUC 0.984, F1-Score 0.959) model performed the best in the training set. Then, we deployed the corresponding online website version (https://wane199.shinyapps.io/TLE_Classification/), showing the details of the LR model for convenience. The AUCs of the tuned logistic regression model in the training and test sets were 0.981 and 0.957, respectively. Furthermore, the calibration curves demonstrated satisfactory alignment (visually assessed) for identifying the TLE patients. Conclusion: The radiomics model from temporal regions can be a potential method for distinguishing TLE. Machine learning-based diagnosis of TLE from preoperative FDG PET images could serve as a useful preoperative diagnostic tool.

4.
Heliyon ; 10(8): e29691, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655363

RESUMO

Background: Marburg virus (MARV), a close relative of Ebola virus, could induce hemorrhagic fevers in humans with high mortality rate. In recent years, increasing attention has been paid to this highly lethal virus due to sporadic outbreaks observed in various African nations. This bibliometric analysis endeavors to elucidate the trends, dynamics, and focal points of knowledge that have delineated the landscape of research concerning MARV. Methods: Relevant literature on MARV from 1968 to 2023 was extracted from the Web of Science Core Collection database. Following this, the data underwent bibliometric analysis and visualization procedures utilizing online analysis platform, CiteSpace 6.2R6, and VOSviewer 1.6.20. Three different types of bibliometric indicators including quantitative indicator, qualitative indicators, and structural indicators were used to gauge a researcher's productivity, assess the quality of their work, and analyze publication relationships, respectively. Results: MARV is mainly prevalent in Africa. And approximately 643 confirmed cases have been described in the literature to date, and mortality observed was 81.2 % in overall patients. A total of 1014 papers comprising 869 articles and 145 reviews were included. The annual publications showed an increasing growth pattern from 1968 to 2023 (R2 = 0.8838). The United States stands at the forefront of this discipline, having dedicated substantial financial and human resources to scientific inquiry. However, co-authorship analysis showed the international research collaboration needs to be further strengthened. Based on reference and keywords analysis, contemporary MARV research encompasses pivotal areas: primarily, prioritizing the creation of prophylactic vaccines to impede viral spread, and secondarily, exploring targeted antiviral strategies, including small-molecule antivirals or MARV-specific monoclonal antibodies. Additionally, a comprehensive grasp of viral transmission, transcription, and replication mechanisms remains a central focus in ongoing investigations. And future MARV studies are expected to focus on evaluating clinical trial safety and efficacy, developing inhibitors to contain viral spread, exploring vaccine immunogenicity, virus-host association studies, and elucidating the role of neutralizing antibodies in MARV treatment. Conclusion: The present study offered comprehensive insights into the contemporary status and trajectories of MARV over the past decades. This enables researchers to discern novel collaborative prospects, institutional partnerships, emerging topics, and research forefronts within this domain.

5.
Front Microbiol ; 15: 1361945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646621

RESUMO

Objective: Probiotics are beneficial to the intestinal barrier, but few studies have investigated probiotics from giant pandas. This study aims to explore the preventive effects of giant panda-derived Clostridium butyricum on dextran sodium sulfate (DSS)-induced colitis in mice. Methods: Clostridium butyricum was administered to mice 14 days before administering DSS treatment to induce enteritis. Results: Clostridium butyricum B14 could more effectively prevent colitis in mice than C. butyricum B13. C. butyricum B14 protected the mouse colon by decreasing the histology index and serum interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels, which improved intestinal inflammation-related symptoms. In addition, the treatment led to the regulation of the expression of Tifa, Igkv12-89, and Nr1d1, which in turn inhibited immune pathways. The expression of Muc4, Lama3, Cldn4, Cldn3, Ocln, Zo1, Zo2, and Snai is related the intestinal mucosal barrier. 16S sequencing shows that the C. butyricum B14 significantly increased the abundance of certain intestinal probiotics. Overall, C. butyricum B14 exerted a preventive effect on colitis in mice by inhibiting immune responses, enhancing the intestinal barrier and increasing the abundance of probiotic species. Thus, C. butyricum B14 administration helps regulate the balance of the intestinal microecology. It can suppress immune pathways and enhance barrier-protective proteins.

6.
Nat Commun ; 15(1): 3406, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649706

RESUMO

Synapses at dendritic branches exhibit specific properties for information processing. However, how the synapses are orchestrated to dynamically modify their properties, thus optimizing information processing, remains elusive. Here, we observed at hippocampal dendritic branches diverse configurations of synaptic connectivity, two extremes of which are characterized by low transmission efficiency, high plasticity and coding capacity, or inversely. The former favors information encoding, pertinent to learning, while the latter prefers information storage, relevant to memory. Presynaptic intracellular Mg2+ crucially mediates the dynamic transition continuously between the two extreme configurations. Consequently, varying intracellular Mg2+ levels endow individual branches with diverse synaptic computations, thus modulating their ability to process information. Notably, elevating brain Mg2+ levels in aging animals restores synaptic configuration resembling that of young animals, coincident with improved learning and memory. These findings establish intracellular Mg2+ as a crucial factor reconfiguring synaptic connectivity at dendrites, thus optimizing their branch-specific properties in information processing.

7.
Adv Mater ; : e2400285, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613131

RESUMO

Bismuth-telluride-based alloy has long been considered as the most promising candidate for low-grade waste heat power generation. However, optimizing the thermoelectric performance of n-type Bi2Te3 is more challenging than that of p-type counterparts due to its greater sensitivity to texture, and thus limits the advancement of thermoelectric modules. Herein, the thermoelectric performance of n-type Bi2Te3 is enhanced by incorporating a small amount of CuGaTe2, resulting in a peak ZT of 1.25 and a distinguished average ZT of 1.02 (300-500 K). The decomposed Cu+ strengthens interlayer interaction, while Ga+ optimizes carrier concentration within an appropriate range. Simultaneously, the emerged numerous defects, such as small-angle grain boundaries, twin boundaries, and dislocations, significantly suppresses the lattice thermal conductivity. Based on the size optimization by finite element modelling, the constructed thermoelectric module yields a high conversion efficiency of 6.9% and output power density of 0.31 W cm-2 under a temperature gradient of 200 K. Even more crucially, the efficiency and output power little loss after subjecting the module to 40 thermal cycles lasting for 6 days. This study demonstrates the efficient and reliable Bi2Te3-based thermoelectric modules for broad applications in low-grade heat harvest.

8.
PLoS One ; 19(4): e0301353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558019

RESUMO

PURPOSE: Even though replantation of limb mutilation is increasing, postoperative wound infection can result in increasing the financial and psychological burden of patients. Here, we sought to explore the distribution of pathogens and identify risk factors for postoperative wound infection to help early identification and managements of high-risk patients. METHODS: Adult inpatients with severed traumatic major limb mutilation who underwent replantation from Suzhou Ruixing Medical Group between November 09, 2014, and September 6, 2022 were included in this retrospective study. Demographic, and clinical characteristics, treatments, and outcomes were collected. Data were used to analyze risk factors for postoperative wound infection. RESULTS: Among the 249 patients, 185 (74.3%) were males, the median age was 47.0 years old. Postoperative wound infection in 74 (29.7%) patients, of whom 51 (20.5%) had infection with multi-drug resistant bacteria. Ischemia time (OR 1.31, 95% CI 1.13-1.53, P = 0.001), wound contamination (OR 6.01, 95% CI 2.38-15.19, P <0.001), and stress hyperglycemia (OR 23.37, 95% CI 2.30-236.93, P = 0.008) were independent risk factors, while the albumin level after surgery (OR 0.94, 95% CI 0.89-0.99, P = 0.031) was significant associated with the decrease of postoperative wound infection. Ischemia time (OR 1.21, 95% CI 1.05-1.40, P = 0.010), wound contamination (OR 8.63, 95% CI 2.91-25.57, P <0.001), and MESS (OR 1.32, 95% CI 1.02-1.71, P = 0.037 were independent risk factors for multi-drug resistant bacteria infection. CONCLUSIONS: Post-replantation wound infection was common in patients with severe traumatic major limb mutilation, and most were multi-drug resistant bacteria. Ischemia time and wound contamination were associated with the increase of postoperative wound infection, including caused by multi-drug resistant. Positive correction of hypoproteinemia and control of stress hyperglycemia may be beneficial.


Assuntos
Hiperglicemia , Infecção da Ferida Cirúrgica , Masculino , Adulto , Humanos , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/etiologia , Fatores de Risco , Reimplante/efeitos adversos , Extremidade Inferior/cirurgia , Salvamento de Membro , Hiperglicemia/etiologia , Isquemia/etiologia , Resultado do Tratamento
9.
Front Cell Infect Microbiol ; 14: 1308742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558852

RESUMO

Background: Growing evidence has shown that gut microbiome composition is associated with Biliary tract cancer (BTC), but the causality remains unknown. This study aimed to explore the causal relationship between gut microbiota and BTC, conduct an appraisal of the gut microbiome's utility in facilitating the early diagnosis of BTC. Methods: We acquired the summary data for Genome-wide Association Studies (GWAS) pertaining to BTC (418 cases and 159,201 controls) from the Biobank Japan (BBJ) database. Additionally, the GWAS summary data relevant to gut microbiota (N = 18,340) were sourced from the MiBioGen consortium. The primary methodology employed for the analysis consisted of Inverse Variance Weighting (IVW). Evaluations for sensitivity were carried out through the utilization of multiple statistical techniques, encompassing Cochrane's Q test, the MR-Egger intercept evaluation, the global test of MR-PRESSO, and a leave-one-out methodological analysis. Ultimately, a reverse Mendelian Randomization analysis was conducted to assess the potential for reciprocal causality. Results: The outcomes derived from IVW substantiated that the presence of Family Streptococcaceae (OR = 0.44, P = 0.034), Family Veillonellaceae (OR = 0.46, P = 0.018), and Genus Dorea (OR = 0.29, P = 0.041) exerted a protective influence against BTC. Conversely, Class Lentisphaeria (OR = 2.21, P = 0.017), Genus Lachnospiraceae FCS020 Group (OR = 2.30, P = 0.013), and Order Victivallales (OR = 2.21, P = 0.017) were associated with an adverse impact. To assess any reverse causal effect, we used BTC as the exposure and the gut microbiota as the outcome, and this analysis revealed associations between BTC and five different types of gut microbiota. The sensitivity analysis disclosed an absence of empirical indicators for either heterogeneity or pleiotropy. Conclusion: This investigation represents the inaugural identification of indicative data supporting either beneficial or detrimental causal relationships between gut microbiota and the risk of BTC, as determined through the utilization of MR methodologies. These outcomes could hold significance for the formulation of individualized therapeutic strategies aimed at BTC prevention and survival enhancement.


Assuntos
Neoplasias do Sistema Biliar , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias do Sistema Biliar/genética , Causalidade
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 321-324, 2024 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-38557387

RESUMO

The male patient, one day old, was admitted to the hospital due to hypoglycemia accompanied by apnea appearing six hours after birth. The patient had transient hypoglycemia early after birth, and acute heart failure suddenly occurred on the eighth day after birth. Laboratory tests showed significantly reduced levels of adrenocorticotropic hormone and cortisol, and pituitary magnetic resonance imaging was normal. Genetic testing results showed that the patient had probably pathogenic compound heterozygous mutations of the TBX19 gene (c.917-2A>G+c.608C>T), inherited respectively from the parents. The patient was conclusively diagnosed with congenital isolated adrenocorticotropic hormone deficiency caused by mutation of the TBX19 gene. Upon initiating hydrocortisone replacement therapy, cardiac function rapidly returned to normal. After being discharged, the patient continued with the hydrocortisone replacement therapy. By the 18-month follow-up, the patient was growing and developing well. In neonates, unexplained acute heart failure requires caution for possible endocrine hereditary metabolic diseases, and timely cortisol testing and genetic testing should be conducted.


Assuntos
Insuficiência Adrenal , Insuficiência Cardíaca , Hipoglicemia , Recém-Nascido , Humanos , Masculino , Hidrocortisona/uso terapêutico , Hipoglicemia/etiologia , Insuficiência Adrenal/congênito , Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Hormônio Adrenocorticotrópico
11.
Front Bioeng Biotechnol ; 12: 1338504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576442

RESUMO

Angiogenesis plays a key role in bone regeneration. The role of neurons of peripheral nerves involved in angiogenesis of bone defects needs to be explored. The transient receptor potential vanilloid 1 (TRPV1), a nociceptor of noxious stimuli, is expressed on sensory neurons. Apart from nociception, little is known about the role of sensory innervation in angiogenesis. Calcitonin gene-related peptide (CGRP), a neuropeptide secreted by sensory nerve terminals, has been associated with vascular regeneration. We characterized the reinnervation of vessels in bone repair and assessed the impact of TRPV1-CGRP signaling on early vascularization. We investigated the pro-angiogenic effect of neuronal TRPV1 in the mouse model of femur defect. Micro-CT analysis with Microfil® reagent perfusion demonstrated neuronal TRPV1 activation enhanced angiogenesis by increasing vessel volume, number, and thickness. Meanwhile, TRPV1 activation upregulated the mRNA and protein expression of vascular endothelial growth factor A (VEGF-A), cell adhesion molecule-1 (CD31), and CGRP. Immunostaining revealed the co-localization of TRPV1 and CGRP in dorsal root ganglia (DRG) sensory neurons. By affecting neuronal TRPV1 channels, the release of neuronal and local CGRP was controlled. We demonstrated that TRPV1 influenced on blood vessel development by promoting CGRP release from sensory nerve terminals. Our results showed that neuronal TRPV1 played a crucial role in regulating angiogenesis during bone repair and provided important clinical implications for the development of novel therapeutic approaches for angiogenesis.

12.
World J Gastrointest Surg ; 16(3): 966-973, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38577088

RESUMO

BACKGROUND: Colorectal cavernous hemangioma is a rare vascular malformation resulting in recurrent lower gastrointestinal hemorrhage, and can be misinterpreted as colitis. Surgical resection is currently the mainstay of treatment, with an emphasis on sphincter preservation. CASE SUMMARY: We present details of two young patients with a history of persistent hematochezia diagnosed with colorectal cavernous hemangioma by endoscopic ultrasound (EUS). Cavernous hemangioma was relieved by several EUS-guided lauromacrogol injections and the patients achieved favorable clinical prognosis. CONCLUSION: Multiple sequential EUS-guided injections of lauromacrogol is a safe, effective, cost-efficient, and minimally invasive alternative for colorectal cavernous hemangioma.

13.
Chin J Integr Med ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561489

RESUMO

Prostate cancer is a prevalent and debilitating disease that necessitates effective prevention and treatment strategies. Green tea, a well-known beverage derived from the Camellia sinensis plant, contains bioactive compounds with potential health benefits, including catechins and polyphenols. This comprehensive review aims to explore the potential benefits of green tea in prostate cancer prevention and treatment by examining existing literature. Green tea possesses antioxidant, anti-inflammatory, and anti-carcinogenic properties attributed to its catechins, particularly epigallocatechin gallate. Epidemiological studies have reported an inverse association between green tea consumption and prostate cancer risk, with potential protection against aggressive forms of the disease. Laboratory studies demonstrate that green tea components inhibit tumor growth, induce apoptosis, and modulate signaling pathways critical to prostate cancer development and progression. Clinical trials and human studies further support the potential benefits of green tea. Green tea consumption has been found to be associated with a reduction in prostate-specific antigen levels, tumor markers, and played a potential role in slowing disease progression. However, challenges remain, including optimal dosage determination, formulation standardization, and conducting large-scale, long-term clinical trials. The review suggests future research should focus on combinatorial approaches with conventional therapies and personalized medicine strategies to identify patient subgroups most likely to benefit from green tea interventions.

14.
Phys Chem Chem Phys ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647259

RESUMO

Soluble N-glycosyltransferase from Actinobacillus pleuropneumoniae (ApNGT) catalyzes the glycosylation of asparagine residues, and represents one of the most encouraging biocatalysts for N-glycoprotein production. Since the sugar tolerance of ApNGT is restricted to limited monosaccharides (e.g., Glc, GlcN, Gal, Xyl, and Man), tremendous efforts are devoted to expanding the substrate scope of ApNGT via enzyme engineering. However, rational design of novel NGT variants suffers from an elusive understanding of the substrate-binding process from a dynamic point of view. Here, by employing extensive all-atom molecular dynamics (MD) simulations integrated with a kinetic model, we reveal, at the atomic level, the complete donor-substrate binding process from the bulk solvent to the ApNGT active-site, and the key intermediate states of UDP-Glc during its loading dynamics. We are able to determine the critical transition event that limits the overall binding rate, which guides us to pinpoint the key ApNGT residues dictating the donor-substrate entry. The functional roles of several identified gating residues were evaluated through site-directed mutagenesis and enzymatic assays. Two single-point mutations, N471A and S496A, could profoundly enhance the catalytic activity of ApNGT. Our work provides deep mechanistic insights into the structural dynamics of the donor-substrate loading process for ApNGT, which sets a rational basis for design of novel NGT variants with desired substrate specificity.

15.
Eur J Pharmacol ; : 176604, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649090

RESUMO

Osteoporosis (OP) is a metabolic bone disease with a high incidence rate worldwide. Its main features are decreased bone mass, increased bone fragility and deterioration of bone microstructure. It is caused by an imbalance between bone formation and bone resorption. Ginsenoside is a safe and effective traditional Chinese medicine (TCM) usually extracted from ginseng plants, having various therapeutic effects, of which the effect against osteoporosis has been extensively studied. We searched a total of 44 relevant articles with using keywords including osteoporosis, ginsenosides, bone mesenchymal cells, osteoblasts, osteoclasts and bone remodeling, all of which investigated the cellular mechanisms of different types of ginsenosides affecting the activity of bone remodeling by mesenchymal stem cells, osteoblasts and osteoclasts to counteract osteoporosis. This review describes the different types of ginsenosides used to treat osteoporosis from different perspectives, providing a solid theoretical basis for future clinical applications.

16.
Org Lett ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652867

RESUMO

Five-carbon (C5) units are the fundamental building blocks that constitute a multitude of natural products. Herein we report an unprecedented unusual C5 functionalization of indole regioselectively at the C-2-position enabled by a (2-pyridyl)sulfonyl-directing palladium-catalyzed dehydrogenative strategy with a bulk chemical 2-methyl-2-butene as a C5 source. Compared to typical C5 functionalization using pentenyl alcohols, carbonates, borates, or halides as the C5 source, the protocol not only has a low cost advantage but also is of atom and step economy.

17.
Oncogene ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654108

RESUMO

Vascular endothelial cells (VECs) are key players in the formation of neovessels and tumor metastasis, the ultimate cause of the majority of cancer-related human death. However, the crosstalk between VECs and metastasis remain greatly elusive. Based on our finding that tumor-associated VECs present significant decrease of Nrdp1 protein which is closely correlated with higher metastatic probability, herein we show that the conditional medium from hypoxia-incubated cancer cells induces extensive Nrdp1 downregulation in human and mouse VECs by vascular endothelial growth factor (VEGF), which activates CHIP, followed by Nrdp1 degradation in ubiquitin-proteasome-dependent way. More importantly, lung metastases of cancer cells significantly increase in conditional VECs Nrdp1 knockout mice. Mechanically, Nrdp1 promotes degradation of Fam20C, a secretory kinase involved in phosphorylating numerous secreted proteins. Reciprocally, deficiency of Nrdp1 in VECs (ecNrdp1) results in increased secretion of Fam20C, which induces degradation of extracellular matrix and disrupts integrity of vascular basement membrane, thus driving tumor metastatic dissemination. In addition, specific overexpression of ecNrdp1 by Nrdp1-carrying adeno-associated virus or chemical Nrdp1 activator ABPN efficiently mitigates tumor metastasis in mice. Collectively, we explore a new mechanism for VEGF to enhance metastasis and role of Nrdp1 in maintaining the integrity of vascular endothelium, suggesting that ecNrdp1-mediated signaling pathways might become potential target for anti-metastatic therapies.

18.
Appl Radiat Isot ; 208: 111311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593592

RESUMO

Waste liquid stored in the containment sumps of nuclear power plants may contain a variety of radionuclides. Real-time monitoring of containment sump waste liquid can ensure that accidents, such as leakage of cooling water, can be avoided. This paper presents the design of a radioactive monitoring system for waste liquid in a containment sump. The detector and the lead-shield in the measurement unit are optimized through Monte Carlo simulations. Experimental verification showed that the background count rate of the measurement chamber in the system was 418.3 cps, and the detection limit of the detection system was 3.01 Bq/L. Distinct gamma-ray characteristic peaks were also observable, demonstrating the system's ability to identify radioactive nuclides in the waste.

19.
Int Immunopharmacol ; 133: 112031, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631219

RESUMO

BACKGROUND: Neuromedin B (Nmb) plays a pivotal role in the transmission of neuroinflammation, particularly during spinal cord ischemia-reperfusion injury (SCII). However, the detailed molecular mechanisms underlying this process remain elusive. METHODS: The SCII model was established by clamping the abdominal aorta of male Sprague-Dawley (SD) rats for 60 min. The protein expression levels of Nmb, Cav3.2, and IL-1ß were detected by Western blotting, while miR-214-3p expression was quantified by qRT-PCR. The targeted regulation between miR-214-3p and Nmb was investigated using a dual-luciferase reporter gene assay. The cellular localization of Nmb and Cav3.2 with cell-specific markers was visualized by immunofluorescence staining. The specific roles of miR-214-3p on the Nmb/Cav3.2 interactions in SCII-injured rats were explored by intrathecal injection of Cav3.2-siRNA, PD168368 (a specific NmbR inhibitor) and synthetic miR-214-3p agomir and antagomir in separate experiments. Additionally, hind-limb motor function was evaluated using the modified Tarlov scores. RESULTS: Compared to the Sham group, the protein expression levels of Nmb, Cav3.2, and the proinflammatory factor Interleukin(IL)-1ß were significantly elevated at 24 h post-SCII. Intrathecal injection of PD168368 and Cav3.2-siRNA significantly suppressed the expression of Cav3.2 and IL-1ß compared to the SCII group. The miRDB database and dual-luciferase reporter gene assay identified Nmb as a direct target of miR-214-3p. As expected, in vivo overexpression of miR-214-3p by agomir-214-3p pretreatment significantly inhibited the increases in Nmb, Cav3.2 and IL-1ß expression and improved lower limb motor function in SCII-injured rats, while antagomiR-214-3p pretreatment reversed these effects. CONCLUSIONS: Nmb protein levels positively correlated with Cav3.2 expression in SCII rats. Upregulating miR-214-3p ameliorated hind-limb motor function and protected against neuroinflammation via inhibiting the aberrant Nmb/Cav3.2 interactions and downstream IL-1ß release. These findings provide novel therapeutic targets for clinical prevention and treatment of SCII.

20.
Heliyon ; 10(7): e28954, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601597

RESUMO

Evidence indicates that Baicalein can ameliorate renal interstitial fibrosis by inducing myofibroblast apoptosis and inhibit the RLS3-induced ferroptosis in melanocytes. However, the relationship between renal interstitial fibrosis and anti-ferroptosis affected by Baicalein remains unclear. In our study, the anti-fibrosis and anti-ferroptosis effects of Baicalein were assessed in a rat model induced by the UUO method in vivo, and the effects of Baicalein on Erastin-induced ferroptosis of renal MPC-5 cells were examined by Western blot of fibrosis-related and ferroptosis-related proteins in vitro. In the UUO-induced rat model, Baicalein decreased kidney weight loss, improved renal function assessed the biomarks of urinary albumin excretion, serum creatine, and BUN levels, and reduced renal tubular injury. Furthermore, Baicalein inhibited renal ferroptosis by reducing ROS and MDA levels and increasing SOD and GSH levels in the UUO rat model. In addition, Baicalein potently reduced the expression of fibrosis-related proteins such as TGF-ß1, a-SMA, and Smad-2 to prevent renal interstitial fibrosis, and increased the expression of ferroptosis-related proteins such as SLC7A11, GPX4, and FTH to inhibit ferroptosis both in vitro and in vivo. Taken together, Baicalein exerts anti-fibrosis activity by reducing the ferroptosis response on the UUO-induced rat model and renal MPC5 cells. Therefore, Baicalein, as a novel therapeutic method on kidney diseases with strong activity in suppressing ferroptosis, could be a potential alternative treatment for renal interstitial fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...